联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> Java编程Java编程

日期:2025-10-23 07:06

Python for Data Analysis

BU.510.615

Course Project

This supplement describes the data provided for your group project. These are real-world datasets. To protect the data provider’s proprietary information, the structure of these datasets, the locations of the tanks therein, and the invoices have been obfuscated so as not to reflect the real information of the data provider.

The datasets chronicle over a year’s fuel purchases (by the gas station owners) and sales at all city gas stations.

Data Dictionary

 Locations .csv

This dataset lists all the gas station locations and contains the following columns:

 Gas  Station  Location: The unique ID of the gas station

 Gas  Station  Name: The gas station name

 Gas  Station  Address: The gas station address

 Gas  Station  Latitude: The gas station latitude

 Gas  Station  Longitude: The gas station longitude

 Tanks .csv

Each gas station location may have more than one tank. This dataset contains informa- tion about these tanks and their attributes

 Tank  ID: A unique ID of each tank in the system

 Tank  Location: Gas station this tank is located at

 Tank  Number: ID of each tank in a specific location

 Tank  Type: The type of fuel this tank is used for:  U for regular gas, D for Diesel, and P for premium

 Tank  Capacity: Capacity of the tank in liters

  Invoices.csv

Each gas station purchases different fuel types from its supplier(s).  Every delivery of each fuel type to all tanks of a location generates one invoice. The invoices.csv dataset contains information about these invoices over time and has the following columns:

  Invoice  Date: Date of the purchase

  Invoice  ID: Unique ID of the invoice

  Invoice  Gas  Station  Location: Gas station location

 Gross  Purchase  Cost: Total Canadian Dollar (CAD) paid for the purchase

 Amount  Purchased: Total number of fuel liters purchased

  Fuel  Type: Purchased fuel type

• Fuel Level Part   1 .csv and Fuel Level Part 2 .csv

These two datasets contain fuel level information in each tank at frequent and mostly regular time stamps. These two datasets contain the following columns:

 Tank  ID: ID of each tank

  Fuel  Level: The amount of remaining fuel (inventory in liters)

 Time  Stamp: The time of inventory reporting

Problem Description

A gas station purchases fuel in bulk (thousands of liters) and sells it to customers like you and me. A typical gas station (location) may offer different types of fuel (regular gas, premium gas, diesel) and each type of gas may be stored in one or more than one tanks in that particular gas station. These tanks are usually underground, out of safety and limited space considerations. The number of tanks and capacity of each tank is driven by many factors such as available space, city regulations, closeness to the suppliers’ reservoirs, and demand, among other factors. It is common for a gas station to carry tens of thousands of liters of fuel at any time. At this relatively large scale, the following decisions may have significant consequences on the survival and profitability of the gas station:

•  Fuel replenishment frequency

•  Fuel replenishment quantity

This is an exciting managerial question for a business school student, with analytical skills, like you!  In the one hand, frequent replenishment in small quantities is attractive as it has less cash tied up to the fuel inventory. On the other hand, larger and less frequent deliveries may qualify the gas station for the quantity discount at every fuel replenishment offered by its supplier.

Independent of the fuel type, the supplier offers the following quantity discounts:

Purchase quantity

(liters)

Discount per liter

(cents)

0-15000

0

15000-25000

2

25000-40000

3

40000+

4

Business Question

Your team is responsible for thoroughly exploring the provided dataset, providing descriptive statistics, inspecting each gas station’s inventory replenishment pattern, visualizing it, and suggesting a better inventory policy that may save these gas stations a significant amount of money. Your decisions must be based on the provided data processed using python and its data analysis packages. You can ignore the gas delivery cost and focus on making the correct inventory replenishment decision that may reduce total purchasing cost while maintaining an excellent customer service level (by not running out of gas).

What questions should you answer in your report?

When embarking on a data-driven decision-making process, it is crucial to determine your analysis’s direction.  Typically,  hypotheses are formed during the initial exploration of the datasets.   In this project, we aim to analyze the fuel price and purchasing order data to evaluate how well we manage our fuel tanks’ inventory and order fuel.  By visualizing the inventory evolution trajectory, we can gain insights into our inventory management practices and identify areas for improvement. We can also determine which locations manage inventory effectively and save money and which locations have riskier inventory management practices (maintain lower safety inventory).  To quantify performance, we can compare the amount of money saved to the maximum potential savings possible if we optimize our purchasing strategy. It is important to consider inflation in our calculations, as the purchasing power of money changes over time. To do this, we need to find Canada’s monthly inflation rates, create a small new dataset with these rates, and join it with our existing data. Based on your analysis, you can develop recommendations for improving the inventory management policy of each location and estimate potential cost savings. Additionally, we can evaluate whether increasing the capacity of existing tanks would be beneficial and identify which fuel stations would benefit most. We can also explore whether a particular day of the week is best for ordering fuel. Keep in mind that answering these questions requires several rounds of data cleaning, merging, transforming, and visualization. While these directions are important, they are not exhaustive. Your analysis should explore significantly outside the scope of these directions to achieve a thorough understanding of our inventory management practices, cost structure, and overall efficiency.

Group Report Details

Each team is responsible for organizing its report. Each team will submit:

 One report in pdf format

• One notebook containing your code that reads the provided csv files and performs the analysis. Please do not change the provided file names. However, you need to change column names (using pandas) in each file.

Evaluation

We will evaluate your work for:

•  Data processing: cleaning, merging, . . .

•  Clarity of your code. Do not forget to leave useful comments in your code

•  Exploring the dataset and providing an overview of these datasets

•  Asking and answering the right business questions

  A thorough and a well-formatted report

•  Nicely formatted graphs

•  Academic integrity of your work

•  Following sound logic in answering the business questions

We will run your code and check your code results with the submitted report during the grading.



版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp